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Abstract. The built-in orientation and motion sensors of smartphones along with 
their wireless communication abilities are utilized to control connected IoT de-
vices from any place in a room, by pointing at them with the smartphone in the 
hand. The information of which device is targeted will be derived from the user’s 
actual location, the spatial orientation of the smartphone and pre-knowledge re-
garding the positions of devices. Chosen devices are remotely operated with sim-
ple mid-air gestures performed with the smartphone. The feasibility of this cost-
effective approach is assessed by user experiments. The continuous readings of 
the smartphone’s inclination, rotation and magnetic field sensors are recorded 
with a dedicated freeware app. An algorithm combines the sensor readings to 
deliver the actual spatial orientation. Our preliminary experiments with different 
smartphone models and several users show that pointing at defined positions and 
performing gestures with a smartphone in the user’s hand can be accurately 
sensed without latency and with small deviations of the orientation measurements 
in the range of up to 5 degrees, indicating the feasibility of this novel approach. 

Keywords: Human-centered computing, Human computer interaction, Pointing 
devices, Universal remote control, Smartphone sensors, User experience. 

1 Introduction 

A way to control technical devices in the living environment in a simple, consistent and 
intuitive way would be highly desirable. One of the most intuitive and natural ways to 
address a visible object in front of the user but beyond the range of touch is to point in 
its direction with a finger, hand or arm [1]. In order to ‘control’ the targeted device the 
user would move a finger, hand or arm ‘in the air’ to perform basic gestures [2].  

As experience shows, we are surprisingly good at pointing with a finger, hand or 
arm at visible targets in specific spatial directions. User studies (e.g. [3-6]) revealed 
that despite the parallax between eye and hand, the spatial accuracy of pointing at a 
target with a finger or arm of the dominant hand is usually below 10 degrees both in 
horizontal and vertical dimensions.  
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The question is how to use this ability of precise direction pointing to control remote 
devices, i.e. how to address the devices and communicate with them in a flexible, nat-
ural and seamless way. We propose to use commodity smartphones for both, selecting 
a device from a distance and remotely controlling its basic functions.  

The state-of-the-art of using smartphones as remote controls in a smart home envi-
ronment with different appliances (TV sets, music boxes, lights, blinds, fans etc.) ac-
cessible via Bluetooth or WLAN (so called IoT devices) is to launch the device-specific 
app and select and operate the device via the touchscreen. However, in many situations 
these display-based smartphone apps are perceived as not very user-friendly: It can be 
annoying to find the right app on the smartphone followed by maneuvering through 
menus and touching designated small and slippery ‘software buttons’ on the 
touchscreen. With dry, wet, cold or trembling hands, without glasses, being in a dark 
room or in a hurry or for users with visual impairments or hand movement disorders, 
this all may be challenging. In addition, the effort is often perceived as disproportionate 
to the simplicity of the task at hand, like dimming a light or switching off the TV.1  

Smartphones are truly ubiquitous – most people carry their smartphone at almost all 
times wherever they are. Besides being a versatile and trusted always-on communica-
tion device, a smartphone is also a powerful measuring device, capable of sensing its 
environment with a variety of built-in-sensors. The ability of sensing its own spatial 
orientation can be used for our purpose.  

We propose a new type of remote controls: phone-pointing remote apps [7]. Unlike 
touch-based apps, phone-pointing remote apps can be used with the phone's screen 
turned off. The interaction scheme is simple and intuitive: With a smartphone in the 
hand, the user points towards a visible but remote IoT device in a room to select it. 
Subsequently, holding the smartphone in the hand and performing some specific hand 
or arm motions ‘in the air’ the user remotely operates the chosen device, triggering 
several basic functions, like dimming a ceiling light, lifting window blinds or increasing 
the volume of a TV set or radio. The control information is sent to the chosen device 
via wireless communication between the smartphone and the wirelessly accessible IoT 
device.  

Whereas phone-pointing to remotely operate IoT devices appears simple and 
straightforward, its underlying concept requires the determination of the smartphone’s 
orientation and its localization in a room while using it as a pointing device. From the 
localization of the smartphone (and the user) and the spatial orientation, the ‘pointing 
projection’ will be calculated as a straight line in absolute 3D coordinates. Finally, po-
sitions along this projection will be matched with a list of known positions of devices 
to be remotely operated in that room in order to appoint the selected device. 

To the best of our knowledge, there are no such implementations yet. In [7], the 
system architecture needed to turn ordinary smartphones into highly available, cost ef-
fective gesture-based remote controls is laid out. In the present paper, the applicability 

                                                           
1  Voice user interfaces, while easier to use, can show annoying performance drops due to dis-

turbances from ambient noise or unclear pronunciation. Moreover, they meet reservations 
from the hesitation to speak to a technical device altogether and raise concerns regarding data 
privacy issues. 
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of the new approach of targeting different IoT objects from various user’s positions 
based on the information about the direction of pointing the smartphone in the user’s 
hand is addressed.  

The remaining of the text is organized as follows. In Section 2, related work regard-
ing the usage of smartphones as pointing devices, for orientation sensing and for indoor 
localization is presented and discussed. In Section 3, the operating principles for phone-
pointing remote controls are shortly described. In Section 4, we present results from 
experiments with different smartphone models and several users to verify the applica-
bility (in terms of accuracy, repeatability and latency) of standard smartphone sensors 
for effective direction and motion sensing. The results and consequences are discussed 
in Section 5. A conclusion and an outline of future work are given in Section 6.  

2 Related Work 

As the information about the orientation and localization of the smartphone in the user’s 
hand are prerequisites for the novel approach, related work in these fields is briefly 
revisited.  

2.1 Smartphones used as pointing devices  

A variety of approaches have been applied to allow for user interaction by pointing 
using smartphones, whether relying on direct pointing with attached flashlights or laser 
pointers, or indirect pointing based on camera images or inertial sensing, using accel-
erometer and gyroscope sensor measurements. 

Pointing with wearables has been widely investigated in the context of in-air remote 
interaction with large displays and screens [8,9]. Examples are commodity devices like 
the AirMouse or special-purpose controllers like XWand [10] or MagicWand [11] based 
on orientation data provided by built-in inertial sensors. Usually, the goal has been to 
design a precise pointer which is usable simultaneously as an input device (‘point-and-
select’, ‘zoom-and-pan’, ‘drag-and-swipe’ selected objects on the screen etc. [12]) and 
an output device (get information from the selected objects and other ‘feedback’). A 
PointerPhone [13] was realized by attaching a laser pointer to a mobile phone and using 
a static camera to track the bright laser dot on the remote screen. Software buttons and 
fingertip gestures on the phone’s touchscreen were proposed to address and manipulate 
the object pointed at on the remote screen. Re-calibration of the screen’s position and 
orientation is required each time the positions of the camera or the screen change.  

Phone-pointing techniques like SmartCasting [14] or TiltCasting [15] based on the 
smartphone’s built-in inertial sensors have been proposed to be used in Augmented 
Reality (AR) applications to project the current smartphone display image via ray-cast-
ing into the surrounding 3D space. In AR/VR applications wearing a Head-Mounted 
Display (HDM), smartphones can be useful as virtual joysticks: a good motor control 
and dexterity are often expected from the users, as well as short selection times [16].  

An interesting observation regarding the pointing accuracy of users in front of large 
screens has been repeatedly made (e.g [17]): On average, pointing errors were larger 
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when the user was in closer distance to the object displayed on the screen than if the 
screen was in a larger distance, presumably due to the larger parallax between the eye-
to-target line and the arm-to-target line. However, since in closer distance the same 
object appears larger, the pointing accuracy is less demanding in this case and the larger 
errors are tolerable.  

2.2 Smartphone sensors for orientation sensing  

Modern smartphones are equipped with a large number of miniaturized sensors which 
can be grouped into two categories:  

 Position and motion sensors (magnetometer, accelerometer, gyroscope) measuring 
the strength of the surrounding magnetic field as a 3-component vector and the linear 
acceleration and rotational velocity of the smartphone along three axes;  

 Environmental sensors (front and back cameras, thermometer, barometer, hygrome-
ter, photometer) taking images and measuring the temperature, air pressure, air hu-
midity and illumination.  

The measured accelerations along all three axes (azimuth, roll, pitch, see Fig. 1) can 
be used, for example, to determine the smartphone’s absolute 3D orientation (i.e., by 
what angle the phone is tilted) to identify time-dependent movements such as rotation, 
swing or shake.  

 

Fig. 1. Three fundamental axes and rotation vectors relative to a smartphone, with azimuth – 
the rotation angle about axis z (the gravity vector), pitch – the rotation angle about axis x and 

roll – the rotation angle about axis y. [18] 

The angular velocities resulting from the gyroscope measurements describe the 
change in the rotation angle (pitch, roll and yaw) of the smartphone over time and there-
fore its relative, time variant orientation in 3D. If the initial orientation is known, the 
absolute orientation can be determined from it [19]. In most smartphones, the 
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accelerometer and the gyroscope are combined in a miniaturized inertial measurement 
unit (IMU) [20-22]. 

In the absence of strong magnetic fields in the phone’s close environment, the mag-
netometer’s 3D measurement of the strength of surrounding magnetic fields is domi-
nated by the Earth’s magnetic field. From the combination of all 3 components, the 
absolute global orientation of the smartphone with respect to Magnetic North is derived 
(compass function) [23]. In Fig. 2, the azimuth angles calculated from measurements 
of the magnetic field sensor are shown when rotating the smartphone in the horizontal 
plane (used for calibration) demonstrating the high accuracy and repeatability. 

 

        

Fig. 2. Exemplary results from different orientation angle measurements using the 
smartphone’s internal 3D magnetic field sensor. 

With their constraints in size, weight, and power consumption, these miniaturized 
smartphone sensors have – compared to laboratory equipment – a restricted sensitivity 
and measurement range and are affected by noise and external disturbances to a larger 
extent (e.g. from electronic subsystems adjacent to the sensors, the Wi-Fi transceiver, 
battery, the package material etc.) as well as can show long-term drifts in their meas-
urements.  

To reduce these influences and to suppress outliers and erroneous measurements, 
state estimation filters such as a Kalman filter and many more advanced algorithms are 
applied [24]. Furthermore, the readings from different sensors can be combined and 
relied on each other and compared to known reference values. Such “software sensors” 
provide improved, smoothed estimates of the actual acceleration and orientation [25]. 
The typical update rate is approx. 200 measurements per second for the IMU and 100 
measurements per second for the magnetometer, giving sufficiently dense data for post-
processing algorithms for many practical applications.  

The accuracy of such “software sensors” after refining the raw sensor data was in-
vestigated in various studies. [26] confirms the presence of heterogeneities when gath-
ering orientation output data from different smartphone devices pointing in exactly the 
same direction. For different smartphone models containing different sensor units, the 
measured orientation showed deviations from references of up to 2.1° and 6.6° for the 
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pitch and roll angles, respectively. The accuracy achievable with smartphone accelera-
tion sensors was shown to be sufficient for a successful recognition of uni-stroke sym-
bols or letters written ‘in the air’ [27,28]. 

A common way to improve the estimate of the absolute orientation is to combine 
(fuse) the readings from the IMU and the magnetometer, under the condition that the 
perpendicular axes of both sensors are aligned [29]. To ensure this, an occasional re-
calibration has to be performed to correct for observed misalignments between the 
axes. Such automatic recalibration could be performed e.g. at time intervals when the 
acceleration is measured only in the direction of gravity and the accelerations along the 
other axes are (almost) zero [30,31]. Similarly, the (absolute) orientation angle from 
the magnetometer can be updated by the angular changes observed by the gyroscope. 
The gyroscope’s output can again be calibrated by comparing the outputs of the accel-
erometer and the IMU orientation integration algorithm, after arbitrary motions [21]. 

Manual re-calibration can also be important. Most re-calibration procedures are 
based on a multi-position approach where the smartphone is moved by hand and hold 
in a few different static positions (recognized by a ‘static detector’), providing correc-
tion factors for (systematic) scale and misalignment (bias) for both the accelerometer 
and gyroscope 3D readings [29]. To calibrate the magnetometer, which is sensible to 
stationary and transient magnetic interferences from surrounding magnetic fields and 
metallic surfaces such as elevators, radiators, or concrete reinforcements, it is suggested 
to rotate the smartphone in all possible orientations.  

2.3 Indoor location techniques with smartphones 

Using smartphones for indoor positioning is attractive for many applications where the 
ability to independently track people is important, e.g. in large offices or hospitals, fac-
tories and warehouses. A large variety of location techniques have been proposed and 
the obtained localization accuracies along with the effort and cost to achieve them have 
been extensively studied (see [25, 32, 33] for large in-depth surveys). During the Mi-
crosoft Indoor Localization Competition, organized in several rounds over the years 
2014–2017, more than 100 teams from academia and industry deployed their indoor 
location solutions in quasi-realistic environments, allowing to directly compare the 
achieved accuracies and deployment costs [34]. 

However, no standard method has been brought up to date that would guarantee a 
similar accuracy, repeatability and seamless availability in indoor environments that 
global navigation satellite systems (GNSS) offer outdoors. Often, the average accuracy 
remains inadequate for many applications. Challenges for accurate indoor localization 
stem from the lack of a dense grid of absolute references for the built-in smartphones 
sensors for (occasional) re-calibration, the often complex indoor interior design enhanc-
ing multipath propagation or shadowing and the building materials themselves which 
distort or block radio and satellite signals. A major challenge for many localization-
based systems, however, is the requirement for these systems to reliably track pedestri-
ans in a highly dynamic environment, e.g., while they are walking with the smartphone 
in their pocket. As will be explained in Section 3, our application is different in this 
respect. 
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Generally, for indoor localization sensing with smartphones infrastructure-based and 
infrastructure-free approaches can be distinguished. Infrastructure-based approaches 
rely on the purposeful, optimized deployment of Bluetooth (BLE) beacons, or custom-
ized radio-frequency (RF), visible or infrared light sources or ultrasound transmitters. 
The signals transmitted by those beacons are picked up by appropriate smartphone sen-
sors and translated into positions from the proximity to the closest beacon (BLE) or 
from the travel time of modulated signals, e.g. Ultra-Wide-Band (UWB), from the 
source. Often, the deployment costs remain high: Special-purpose hardware needs to 
be carefully deployed and hardwired or battery-powered in every area where indoor 
location services are needed. Whereas BLE proximity estimation allows only for a low 
average accuracy of about 3 to 10 meters, most infrastructure-based techniques are re-
ported to achieve localization accuracies of about 2 to 3 m in standard indoor scenarios 
[33].  

Most infrastructure-free approaches focus on exploiting existing Wi-Fi signals from 
WLAN access points [35, 36], others on ambient FM radio or TV signals, geomagnetic 
or sound signals. As the source for indoor localization, a received signal strength (RSS) 
indicator is used, both for (manually) building an RSS distribution map of the ubiqui-
tous signals in the specific indoor environment (a laborious work called ‘fingerprint-
ing’) and later for finding the actual localization by matching the measured RSS to this 
map. Generally, the map will not be dense enough or the RSS will be  unstable and 
distorted and hence the achievable accuracy is generally not better than 3 to 5 meters. 
A fine-timing protocol called Wi-Fi location includes the time it takes for the Wi-Fi 
signal to travel, enabling position estimation with improved accuracy of up to about 
2  m [37]. 

Surveys revealed that due to its constant availability and high sensitivity, the best 
positioning accuracy could be achieved at no extra cost relying on the built-in IMU 
(e.g. [33, 34]). Based on double-integrating the continuously measures accelerations, 
the current position of the device is determined by accumulating the path vector from a 
known starting position (a class of techniques called ‘dead reckoning’). However, small 
acceleration errors can rapidly accumulate to large positional errors of several meters 
[38]. If frequent re-calibration at reference points could be applied, e.g. at zero-points 
of the acceleration, the localization accuracy could be greatly improved [30].  

Many realizations have been described which combine different technologies (hy-
brid systems) to improve the accuracy and availability of position estimates [25, 39]. 
For example, using IMU and WiFi RSS indicator readings and combining dead reck-
oning and a fingerprinting technique, localization accuracies in the range of 1 m could 
be achieved [32,40]. In Table 1, average localization accuracies for selected smartphone 
sensors and sensor combinations are summarized. 
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Table 1. Average localization accuracies achieved with selected smartphone sensors and sensor 
combinations (adapted from [32,33,40]). 

 Sensor Sensor information 
(technique)  

Approx. 
sampling 
rate per sec 

Average localization  
accuracy 

Infra-
structure-
free 

Magnetometer  Orientation  
(compass) 

100 2…10 degrees (static)  
(= 0.2…0.7 m in 4 m dist.)  

Accelerometer + 
gyroscope (IMU)  

Orientation 
(azimuth, pitch) 
(dead reckoning) 

200 1…3 degrees  (static) 
(= 0.1…0.2 m in 4 m dist.) 
1…2 m 

IMU + Magne-
tometer 

Orientation 
(compass + PDR) 

100 0.3…1 m (static) 
1.5…2.5 m (dynamic) 

Camera  Image series  
(optical flow) 

20  2…3 m  

Barometer Relative height  
(air pressure) 

10 0.3…1 m 

GNSS  Global position 1  5…50 m 

Infra-
structure-
based 

WiFi  RSSI (Fingerprinting) 0.5 2…10 m  

Bluetooth RSSI (Time differ-
ence of arrival)  

1 3…10 m 

Photosensor Position of light 
sources (illumination) 

10 0.3…2 m 

Acoustic,  
Ultrasound 

Distance to walls  
(Time of flight) 

20 0.2…0.5 m 

3 Operation Principles 

We propose a universal, gesture-based remote control for operating electronic devices 
in the living environment, which would be very easy, almost intuitively to use. The 
built-in orientation and motion sensors of smartphones (magnetometer, accelerometer, 
gyroscope) along with their wireless communication abilities are utilized to control 
connected IoT devices by pointing at them with the smartphone in the hand. The infor-
mation of which device is targeted will be derived from the user’s actual location, the 
spatial orientation of the smartphone and pre-knowledge regarding the positions of de-
vices to be remotely operated.  

A device would be marked as selected when three states are registered by the app: 
1) The smartphone is pointed at a certain point in space for a longer while (i.e. the 3D 
coordinates of the smartphone’s orientation are almost stable during a period of 1...2 
seconds), 2) the projection of this orientation (roughly) matches with one of the 3D 
positions from a stored list of devices’ positions, and 3) the inclination (pitch) data show 
a short tilting or ‘ticking’ moment, which would be natural and intuitive hand gesture 
by the user to confirm this selection. This 3-stage confirmation is to avoid any device 
to be accidentally operated by motions of the smartphone while using it for other pur-
poses than as a remote control.  
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Selecting the right devices requires for the app to find out the smartphone’s (and 
hence to user’s) approximate location in an indoor environment. Compared to many 
dynamic position-tracking applications where even approximate indoor position loca-
tion finding with smartphones might be difficult (see Table 1), this problem would be 
facilitated here since during the process of device selection many parameters (e.g. the 
user’s position, the smartphone’s orientation) change slowly and the number of poten-
tial positions a certain device might be selected from would be limited (by the size of 
the room, furniture etc.) and/or known form previously recorded observations and 
teachings. Hence, the promising results for the localization accuracy obtained for IMU 
or magnetometer readings for static situations give positive indications regarding the 
feasibility of our approach.  

After selecting a device by pointing at it with their smartphone, the user can specify 
an operation using movement gestures with the arm or hand while still holding the 
smartphone. A gesture is carried out with the hand-held smartphone describing ‘a tra-
jectory in the air’. For example, an upward forearm movement or a quick tilting of the 
smartphone (as to make a ‘tick’) can signal turn-on, whereas a downward movement 
can signal turn-off. Similarly, a clockwise rotation can signal volume-up, whereas a 
rotation in the opposite direction, counterclockwise, can signal volume-down. Only the 
relevant, intended part of the trajectory is evaluated for recognition; the delivery and 
final movements are discarded. By assigning the trajectory features to one of the pre-
defined gesture classes, the gesture is automatically recognized. Knowing the basic ges-
tures to remotely operate the main functions of the selected device, the recognized ges-
tures can be automatically decoded by the app into device-specific commands (see Ta-
ble 2).  

Table 2: Example of a simple gesture lexicon and possible associated functions. 

Gesture: Could be associated 
with: 

No. Acronym Action Trajectory Device Function 

1 ON point at it, tilt — lamp switch on 

2 OF point at it, tilt — switch off 

3 UP move hand or arm 
straight bottom-up 

line bottom-up blind lift / open 

4 DN move hand or arm  
straight top-down 

line top-down lower / close 

5 LR move hand or arm  
straight left-to-right 

line left-to-right radio volume higher 

6 RL move hand or arm  
straight right-to-left 

line right-to-left volume lower 

7 CR turn/rotate hand or 
arm to the right 

circle or ellipse 
clockwise 

heater warmer 

8 CL turn/rotate hand or 
arm to the left 

circle or ellipse  
counterclockwise 

colder 

 
The exact gestures can vary from one implementation to another, and could be cus-

tomized by the user [41,42]. The device-specific ‘meaning’ of the gestures performed 
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with the smartphone in the user’s hand will be sent wirelessly to the selected IoT device. 
The use of device-specific and also personalized gestures can be ‘learned’ in a similar 
way: Users would demonstrate selections of devices by pointing at them from relevant 
locations and demonstrate gestures to remotely operate different functions of these IoT 
devices by arm and hand movements.  

4 Experimental results  

The accuracy and consistency of orientation measurement are evaluated via off-line 
calculation of experimental data, collected using a dedicated freeware app2. An algo-
rithm combines and filters the sensor readings to deliver the actual 3D orientation an-
gles.  

To make users consecutively point at specific positions in a room, a test room was 
prepared for the experiments with different numbered post-its (‘markers’) attached to 
different positions on a wall, in various spacings from 15 cm to 60 cm, horizontally and 
vertically, in heights from 0.5 m up to 2 m above the floor.  

The user experiments were conducted as follows: Every user takes a position marked 
on the floor in a certain distance to the wall and starts recording the measurements of 
the built-in sensors via the dedicated app by touching the start/stop button on the 
smartphone’s touchscreen. The user then points at a visible marker holding the 
smartphone with the upper edge (i.e. along the y axis, see Fig. 1) towards the marker 
for a short time, and possibly shortly ticks the smartphone to indicate the selection of 
an (imaginary) device at the marker’s position. No “dry run” was performed for famil-
iarizing the user with either the smartphone interface or the task. The user may then 
choose to point at additional markers consecutively in time. The position and orienta-
tion sensor readings are continuously recorded with a rate of approx. 100 measurements 
per second.  

The data recording is continued until the user presses the smart/stop button on the 
touchscreen again. All recorded data are stored in a data sheet which after stopping the 
recording is ready to be sent from the smartphone to the computer to be further pro-
cessed and visualized. 

At this early stage of our investigations, the post-processing is limited to baseline 
reduction, phase-wrapping and motion detection, as to highlight the quasi-static orien-
tation measurements (pointing) and differ them from the dynamic states (= motion be-
tween pointing instants; gestures). So far, no further automatic re-calibration has been 
carried out.  

Figure 3 shows results from continued azimuth and pitch angle measurement with a 
smartphone held in the user’s hand. Here, the user turns from West (270°) to South 
(180°) and back 4 times. In Fig. 3 the effect of tilting the smartphone while pointing (as 
to switch an imaginary device on or off) is also shown. 

Figure 4 shows the potentially high pointing precision and accuracy. The test person 
consecutively swapped between pointing at two markers in a small distance to each 

                                                           
2  Physics Toolbox Sensor Suite, https://www.vieyrasoftware.net/ 
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other (15 cm horizontally). The absolute displacements of the smartphone’s pointing 
positions were calculated from the known distance from the person’s position to the 
markers (approx. 2.5 m here). 

       

Fig. 3. (Left) Results from continued azimuth and pitch angle measurement with a smartphone 
held in the user’s hand. Here, the user turns from West (270°) to South (180°) and back 4 times. 

Every time when pointing at these directions, the user slightly tilts the smartphone to indicate 
the wish to operate a device. (Right) Polar view of the azimuth angles when the smartphone is 

not moved and rests in the hand. 

  

Fig. 4. Exemplary results from continued azimuth angle measurements with a smartphone in 
the user’s hand, as a function of time (left) and histogram (right), when repeatedly pointing at 

two reference markers separated horizontally by 15 cm, from a distance of 2.5 m. 

Figures 5 shows results from continued azimuth and pitch angle measurements when 
pointing the smartphone consecutively at different markers (their positions indicated as 
crosses in the 2D area plot). Below, the histograms of the azimuth and pitch measure-
ments are given, showing a high precision (mean and maximum width of the histogram) 
and accuracy (deviation from the marker’s azimuth positions). 

Accuracies in the range of ±5° can be achieved in detecting the direction of pointing 
with a smartphone. This accuracy range indicates the consistency of the user operations 
rather than merely of the sensor measurements. For most applications, this accuracy is 
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expected to be sufficient to select different devices located in a room by freely pointing 
at them with a smartphone in the hand. 

 

     
 

    

Fig. 5. Exemplary results from continued azimuth and pitch angle measurements with a 
smartphone in the user’s hand, repeatedly pointing at 5 reference markers separated horizon-

tally and vertically by 30 cm, from a distance of 2.5 m: Azimuth and pitch as a function of time 
and 2D plot of the orientation measurements (upper row), histograms of static azimuth and 

pitch measurements compared to the positions of markers (lower row). 

In Figs. 6 and 7, results for recorded dynamic azimuth and pitch values along the 
smartphone’s motion trajectory are shown when simple linear and circular gestures 
from the gestures lexicon are performed. To contribute those trajectories to several ges-
ture classes, approximation fits of straight lines or ellipses are calculated. 
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Fig. 6. (Left) Results from continued azimuth and pitch angle measurements with a smartphone 
in the user’s hand, performing several left-right movements (Right) Trajectory in a chosen time 

interval and recognized gesture (in green). 

  

   

Fig. 7. Results from continued azimuth and pitch angle measurements with a smartphone in the 
user’s hand, performing several straight up-down movements (top row) and clockwise circles 

(bottom row). In the right column, the performed trajectory of a chosen time interval along with 
the recognized gesture (in green) are shown. 
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5 Discussion 

The proposed solution for a simplified seamless remote control is based on built-in 
smartphone functionalities and does not require additional hardware. Using a phone-
pointing remote app, users would be able to select devices by physically pointing their 
smartphone at them, and then use hand or arm movement gestures, while holding the 
smartphone, to operate these devices, without needing to turn on the phone screen. 
Phone-pointing remote apps will use standard smartphone sensors, including the mag-
netometer and the g-force meter (or the accelerometer) to identify 3D pointing direc-
tions during device selection, and the accelerometer and the gyroscope to recognize 
movement gestures while holding the smartphone. As the published results revealed 
and our experiments confirm (see Section 4), the smartphone’s spatial orientation is 
sensed by the built-in position sensors with high accuracy. 

In order to use the smartphone as a direct pointing device, the current location of the 
smartphone in the users’ hand has to be recognized. As discussed, deriving the location 
of the user in a room or home from measurements available to a smartphone can be a 
challenging problem [33]. Several constraints, specific for the envisioned application, 
help to keep the orientation errors low and allow to be optimistic about the feasibility 
to determine the user’s location with sufficiently high accuracy:  

 While using the smartphone as a direct pointer, the user and the smartphone are at 
almost static positions, with slow changes of the position and the orientation angle 
for a longer period of time (seconds). The smartphone is intuitively hold in almost 
horizontal position (and not worn in a pocket, etc.), simplifying the re-calibration of 
the acceleration sensor as the gravity component is dominating.  

 Typically, the system would be deployed in small to medium sized rooms. As has 
been shown by several authors (e.g. [6, 17], the average positioning accuracy 
achieved with algorithms based on inertial and magnetic sensor readings is dispro-
portionally smaller in small rooms than in large rooms. The front size of many targets 
(i.e. the IoT device to be operated) is typically large compared to typical distances 
to them and the distance between two adjacent targets is typically large, reducing the 
requirements regarding the pointing accuracy.  

 The position estimation can be improved by integrating a digital building model, 
containing e.g. spatial constraints up to non-accessible areas. In many cases it should 
be sufficient to estimate the most likely positions of users to operate different devices 
from. The list of these positions can be learned from initial observations of the users 
in the room and refined by using Machine Learning (ML).  

6 Conclusion and Future Work 

Commodity smartphones can be turned into ubiquitous, easy-to-use, intuitive gesture-
based remote controls by making use of their built-in orientation sensors and wireless 
communication. Accordingly, they may be used as general-purpose, user-friendly al-
ternatives to existing touch, voice or camera-based smart home interfaces, without the 



15 
 

requirement of any extra hardware. We envisage that the proposed approach could be 
adapted to other contexts of mid-air interactions with multiple devices, beyond the 
smart home environment, like for example larger-range gestural interactions in work-
shops or factory halls, technology-enhanced public spaces, etc. with the aim to improve 
its usability, intuitiveness and experience.  

We presented a novel approach to remote controlling, which combines smartphones 
with hand movement gestures. Unlike conventional remote control apps that use the 
smartphone touchscreen for input, with this approach, the phone's screen can remain 
turned off. Users select devices by pointing to them with their smartphone, and then 
use hand movements, while still holding the smartphone, to operate those devices. Alt-
hough mobile phone-based interactions with remote screens have been investigated in 
the past, they have not been considered for applications in everyday tasks.  

The promising results of preliminary experiments carried out with several users and 
with different smartphone models show that the novel remote control allows to accu-
rately point at specific spatial markers without a guidance of feedback (like visible dots 
from laser pointers). This is achievable with sufficient accuracy and repeatability, un-
affected by the distances to the target device, obstructions along the imaginary line to 
that target or the ambient light conditions. Based on a high-quality orientation and mo-
tion reconstruction, with an improved separation between gesture classes the list of pre-
ferred quasi-intuitive gestures can be largely extended (including ‘numbers’ and other 
multi-stroke gestures), hence more devices and functions could be added. 

As next steps, extensive validation tests to be deployed in the living environments 
of a larger number of test persons will be conducted and issues towards a real-time 
implementation of a phone-pointing app will be addressed. 
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